', { cookie_domain: 'auto', cookie_flags: 'max-age=0;domain=.tistory.com', cookie_expires: 7 * 24 * 60 * 60 // 7 days, in seconds }); '분류 전체보기' 카테고리의 글 목록 (18 Page) :: MakerLee's Workspace
728x90



가끔 9.99$ 세일 터지는 라벨매니저 160 입니다. 


아마존에서 파는 제품이다 보니 다른 언어(이탈리아어, 프랑스어 등)들은 지원하는데 한글은 지원 안한다는 단점이 있지만


일단 가격이 매우 싸고 한국 배송이 되는 장점이 있었죠. 



라벨 테이프는 알리익스프레스 직구로 개당 5$ 정도 합니다. 


이걸 처음 사서 잘 쓰다가 한글에 대한 욕구가 심해서 장터에 판매하고 아래 모델을 샀었죠.








위의 것은 핸드헬드 용이지만 이것은 PC에 꽂아 사용하는 방식입니다. 


특이하게도 PC에 꽂으면 외장 메모리 형식으로 연결되면서 폴더가 열리는데


그 폴더 안에 프린팅 프로그램이 있기 때문에 별도의 프로그램 설치 없이 바로 사용할 수 있습니다. 


이미지 삽입이 가능하고 한글도 가능했습니다만


이상하게 WIN10 쓰는 데스크탑에서는 한글이 안나오고 WIN7 쓰는 놋북에서만 한글이 나오더군요;;


이것도 꽤나 잘 썼습니다. 7미터짜리 카트리지를 5개쯤 소모한듯. 









전 모델을 너무 잘 쓰다보니 점점 더 상위 모델도 괜찮겠다는 생각이 들어서 업그레이드를 하기로 했습니다.


이건 블루투스로 스마트폰과 연결해서 사용하는 모델입니다. 


사진에는 74.81$ 로 떴지만 used 모델 선택해서 50$ 중반에 구매했습니다.  


tax 붙고 배송비 붙으니 70$정도 되네요


사실 이쯤되면 쿼티 키보드+한글 지원되는 엡슨 라벨기(7만)를 국내에서 구매해도 됩니다만


전에 사둔 다이모 라벨지가 남아있기 때문에 결국은 이걸 또 쓰게 되네요








웃기는건 디지털 라벨러가 9.99$ 인데 이런 모델이 11$입니다. 











국내 가격은 뭐... 말할것도 없죠. 


이래서 직구를 끊지 못합니다.







추가로 재밌는 사실을 알았는데


라벨지가 사이즈별/색깔별로 여러가지 있습니다. 그리고 그중에



이런 열수축 튜브에 인쇄하는 라벨 카트리지도 있지요







홈페이지 설명에는 산업용 Rhino 시리즈에만 사용 가능하다고 써있는데


카트리지 형태가 일반 카트리지와 별로 다르게 생기지 않은 것 같아 검색을 좀 해봤습니다. 










그랬더니 아마존 리뷰에 그냥 싸구려 다이모 라벨기(여기서는 모델 160)에 넣어도 가능하다고 되어있네요


지금은 수축튜브도 많고 딱히 수축튜브에 라벨링할 일이 없는데 다음에 필요하면 써봐야 겠습니다. 

728x90
728x90


파워를 24V로 교체했습니다. 











그래서 홀을 새로 뚫었습니다. 














히팅베드 스위칭용 릴레이 PCB를 잘못 만든 것이 발견되어 배선을 수정했고요.











           


시험삼아 베드를 가열해봤습니다. 


정가운데가 100도면 가장자리는 90도, 모서리 부분은 80도 나오네요... 


사용시에 문제가 생기면 열선을 더 넓은걸로 바꿔야 할 듯 합니다. 










전원 스위치를 시험해 보는 중입니다. 













220V 푸쉬 스위치를 눌러 임시 전원이 공급되면 릴레이에 다시 DC 전원이 공급되어


ON 상태가 유지되는 개념입니다. 









한번만 누르면 계속 켜집니다. 그리고 다시 눌러도 꺼지진 않습니다;;












일단 넘겨두고 RAMPS 보드에서 TB6560 스텝 드라이버로 선을 연결하기 위한 커넥팅 보드를 만들었습니다. 









방향을 알아보기 쉽게 색을 다르게 했습니다. 

























기본 Marlin 펌웨어를 올리고 Configuration.h 파일을 훑어가며 한줄씩 수정&업로드를 반복하고 있습니다. 


LCD 설정을 바꾸고 power supply 를 ATX 로 설정해서 파워 on/off 신호를 쓸 수 있도록 했습니다. 













기본적으로 ramps 보드가 켜지면 PS 커넥터에서 5V 출력이 나오더군요.


SSR 이 연결되어 자동으로 파워 서플라이가 켜지게 됩니다. 












M81을 입력하면 LCD에 꺼졌다는 표시가 나오고 SMPS 가 OFF 됩니다. 


전면에 푸쉬 스위치는 의미가 없어졌네요.


기본 동작은 잘 하는데 전면에 전원 스위치를 넣는게 편할 듯도 해서 고민을 해 봐야겠습니다. 


넣어야 한다면 ATtiny85를 이용해서 Ramps의 신호와 전면 스위치의 입력을 처리하도록 하면 될 것 같습니다. 


일단은 메모만 해 두고 넘어갑니다. 









USB 케이블을 빼고 SMPS 전원으로만 켜면 부팅이 되지 않아 이상하게 생각했는데


선을 하나씩 빼보니 리밋 센서쪽에 문제가 있는 것 같습니다. 


다음번에는 리밋 센서에서 뭐가 잘못됐는지 확인해 봐야 겠네요

728x90

'Completed > 3D Printer - CoreXY' 카테고리의 다른 글

CoreXY - 조립중 7  (0) 2017.07.20
CoreXY - 조립중 6  (0) 2017.07.07
Marlin 펌웨어 찾다보니 Document 가 엄청 좋아졌네요  (0) 2017.06.21
CoreXY - 조립중 4  (0) 2017.06.21
CoreXY - 조립중 3  (0) 2017.06.17
728x90


만물상에 있던 재고 중 절반을 쓸었습니다. 


최근 지른 것중 가장 만족스럽네요. 







기판은 패턴도 날아가고 쓰기가 난감해 전부 제거했습니다. 


불이 들어오는 곳을 감싸고 있는 투명한 플라스틱이 내열성이 없어 제거시 조심하지 않으면 녹아버립니다. 


저는 기판 뒤쪽에서 토치로 살살 달궈서 납을 녹여내고 펜치로 뽑아냈습니다. 


이때도 조심하지 않으면 토치의 열기가 플라스틱에 닿아서 녹아버리더군요









여러개를 이어붙여서 디스플레이 되는 길이를 늘릴 수 있습니다. 


이때 위 그림에서 맨 오른쪽 DATA 핀은 Data IN 이 되고 맨 왼쪽 핀이 Data OUT 이 됩니다. 


첫번째 디스플레이를 오른쪽에 배치하고, 두번째 디스플레이를 그 왼쪽에 배치합니다. 


아두이노의 data 핀을 첫번째 디스플레이에 연결 후


첫번째 디스플레에의 Data OUT 핀을 두번째 디스플레이의 Data IN 에 연결하는 식으로 연장하면 됩니다. 


나머지 핀은 모두 공통이고 


연결시 맨 오른쪽부터 시작한다고 생각하면 편합니다.  




코드에서 수정할 부분은


#define displayLength 8  을 


 #define displayLength 24 


이렇게 디스플레이 길이에 맞춰 숫자를 변경해 주기만 하면 되고요






그러면 이렇게 이어지게 됩니다. 





 




스크롤 코드를 넣어봤습니다. 












닉시 튜브처럼 아주 옛날 아날로그 기술은 아니지만


90년대 초반에 모토로라 핸드폰에서 보던 디스플레이의 추억이 있어 


빈티지스러운 매력이 느껴집니다. 




728x90
728x90

만물상(http://www.manmullsang.com/) 에서 부품상태로 1천원에 판매중인 것을 몇개 사봤습니다. 


부품명 검색해보니 아두이노 라이브러리(https://github.com/PaulStoffregen/LedDisplay) 가 있어 연결해봤습니다. 


색이 너무 이쁜데 사진으로는 다 보이질 않습니다. 


이 글 쓰면서 찾아보니 엘레파츠에서 신품 가격이 5만원이네요...  다시 사재기해놓으러 달려갑니다. 

728x90
728x90


CoreXY 조립이 거의 끝나서 이제 펌웨어 살펴보려고 Github 들어갔더니 홈페이지가 있더군요.

옛날(2015년)에 델타 펌웨어 수정할때는 정말 코드 한줄한줄 읽어보고

코멘트 번역해서 일일이 이게 뭔지 체크하곤 했는데 

이제는 홈페이지에 설명이 다 되어있네요. 

좀 읽어보니 기능도 엄청 다양해져서 별의별 기능 다 들어가있고..
 


728x90

'Completed > 3D Printer - CoreXY' 카테고리의 다른 글

CoreXY - 조립중 6  (0) 2017.07.07
CoreXY - 조립중 5  (0) 2017.06.29
CoreXY - 조립중 4  (0) 2017.06.21
CoreXY - 조립중 3  (0) 2017.06.17
CoreXY - 조립중 2  (2) 2017.06.14
728x90


케이블 체인 작업에 들어갑니다. 


원래 여기에 쓰려고 알리에서 사놓은게 있었는데 대체 어디로 사라졌는지 


결국 새로 샀네요









Y축에서 X축으로 넘어가는 부분에 케이블 체인을 고정할 부품입니다. 


원래 아크릴로 만들었는데 작업하다 보니 화살표 부분의 접착면이 좁아 


자꾸 떨어지더군요









그래서 힘들게 알루미늄으로 다시 깎았습니다. 


이번에는 운이 따르지 못했는지 탭 낼 구멍 뚫다가 자꾸 드릴이 부러져 박히는 바람에


3번이나 힘들게 재작업을 했습니다만 저 화살표 부분의 볼트가 문제를 일으키더군요











자꾸 걸립니다..













결국 다시 원래 아크릴 부품에 보강재를 대서 해결했습니다. 


알루미늄 부품 작업하느라 3일은 까먹었는데 헛수고였네요










델타 쓰면서 히터선이나 센서선 등 각종 케이블의 트러블로 너무 귀찮은 일이 많았기 때문에


이번에는 유지보수를 최대한 줄이고 싶었습니다. 


모든 축에 케이블 베어를 사용해 전선에 최대한 문제가 없도록 했습니다. 









Z축은 손으로 돌리지 않으면 움직이지 않는데 전동드릴 물려서 휙 내려버리니 편하네요









전력소모가 많은 히터와 히팅베드에는 RC용 고전류 커넥터(60A) 를 사용했습니다. 










어느정도 됐다고 생각했지만 이후에도 리밋센서선 빼먹고 냉각팬 케이블 빼먹고 하느라


추가로 선 집어넣느라 손이 많이 갔습니다. 











제가 구매한 스티커형 히팅베드에는 센서가 없기에 별도로 100K NTC 온도센서를 집어넣었습니다. 












그리고 베드의 보온을 위해 펠트지 스티커를 그 위에 붙였습니다.  


화방에서 스티커가 붙어있는 펠트지를 팔더군요. 


효과 좋으라고 2장을 겹쳐 붙였습니다. 















전선이 복잡해져서 라벨링을 하고 작업하는 중입니다. 















센서핀들 크림핑해서 전부 연결해주고요














선은 일단 순서 상관없이 대충 끼워만 놨습니다. 









마지막으로 커넥팅 작업이 잘 됐는지 테스터로 전부 확인했습니다. 


펌웨어 작업중에 문제 생기면 찾기 힘들기 때문에 미리 해두는 게 편하지요.


다행히 케이블은 전부 잘 연결되었더군요.


728x90

'Completed > 3D Printer - CoreXY' 카테고리의 다른 글

CoreXY - 조립중 5  (0) 2017.06.29
Marlin 펌웨어 찾다보니 Document 가 엄청 좋아졌네요  (0) 2017.06.21
CoreXY - 조립중 3  (0) 2017.06.17
CoreXY - 조립중 2  (2) 2017.06.14
CoreXY - 조립중 중간사진들.  (0) 2017.06.10
728x90


가공영역에 맞춰 베드 테이프를 붙이기 위해 마스킹 테잎으로 위치를 표시해보는 중입니다. 









어째 틀어졌네요. 


확인해 보니 타이밍 벨트를 조일 때 균형있게 당겨 조이지 않으면 저렇게 틀어지더군요











프린터 크기는 370*450*550 이고


프린팅 영역은 250*260*260 정도 됩니다. 


프린팅 영역을 최대한 확보하느라고 설계를 타이트하게 했는데


다른 프린터와 비교할수가 없으니 잘 된건지 모르겠습니다. 















타오바오에서 공수한 베드 스티커와 히팅 시트 스티커를 붙였습니다. 


히터 스티커는 크기가 270mm정도면 좋겠는데 아무리 찾아도 그런 사이즈는 없더군요












베드 레벨링 조절너트는 아크릴 깎아서 만들었습니다. 


이소프로필 알콜을 절삭유로 썼더니 저렇게 가공면이 허옇게 뜨거나 가끔은 깨지더군요. 


다음부턴 아크릴엔 쓰지 말아야겠습니다. 




















벨트 고정클립은 조일때마다 휙휙 돌아가고 잘 고정도 안돼서 퇴출했습니다. 









이젠 고정 잘 되고 조절하기도 훨씬 편하네요


728x90
728x90


일단 프로파일을 다 맞춰서 조여봤습니다. 


이럴때 작업용 정반이 있으면 좋겠는데 그런게 없어서 그냥 테이블에 놓고 


직각자로 맞춰보며 조였습니다. 







정확하게는 스텝모터부분과 상면 프레임을 먼저 맞춰서 조이고,


볼스크류와 리니어 베어링이 있는 후면 프레임을 맞춰서 조인 다음 나머지를 조였습니다. 


이것도 은근히 시간 걸리네요








기초부품만 조립했는데도 거의 다 된듯한 느낌.










... 은 착각이었습니다. 연마봉과 달리 LM 가이드는 정말 죽어라 안 잘리네요. 


이거 그냥 탄소강이 아니라 HSS인듯.. 생각해보면 당연한 일인데


연마봉은 그나마 쉽게 잘랐지만 


고속절단기도 없이 DC 스핀들 모터로 저걸 자르려니 정말 진도가 안나갑니다. 


연마봉은 0.1mm 씩 밀고 가면 됐는데 LM 가이드는 그랬다간 바로 멈춰버리고


0.01mm 씩 밀어야 하더군요. 수동으로는 도저히 답이 안나와서


Gcode 생성해서 자동으로 돌렸습니다. 


그리고 하루에 서너시간씩 이틀 걸려서 간신히 절단에 성공했습니다...








인생에 이걸 또 자를날이 오지 않기를 바랄뿐입니다. 











일부 가공이 안 된 부분은 수공구로 해결합니다. 


매번 느끼는 거지만 드릴링 머신이 있으면 좋겠어요.









수공구로 해결하다 보니 특히나 탭핑 부분이 직각이 안맞아서


조립하고 보면 약간 틀어져 있는 경우가 꽤 있네요









그래도 설계에 큰 실수는 없어서 천천히 조립 진도를 빼고 있습니다. 










타이밍 벨트 조이는 부품은 작은 핀 같이 생겼는데


조립성이 너무 안좋아서 아무래도 다시 설계해야 할 듯 합니다. 










아무리 설계를 잘 해도 처음 조립하다 보면 문제가 생길 수 밖에 없는데


그래도 생각보다 큰 문제 없이 조립이 되고 있네요. 










벨트 홀 부분은 생각보다 1mm 정도씩 옆으로 밀려나긴 했는데


그래도 여유를 두고 설계해서 걸리지 않고 잘 통과합니다. 









조립중 발견된 한가지 문제.


Z 축 베드 위에 열선베드가 있는데 두 베드간의 간격을 너무 넓게 잡는 바람에


Z축을 베드 끝까지 올려도 노즐이 베드에 닿질 않습니다. 











베드 끝에 걸리는 부분은 리니어 베어링이라 리니어 베어링을 약간 내려주면


그만큼 베드가 올라가겠죠. 


그래서 다시 알루미늄을 깎아 스페이서를 만들어 줬습니다. 


바로 풀어서 끼울 수 있게 장공처럼 깎아놓고 맞춰봤더니 역시나 잘 맞는군요









실제로는 이 위치에 들어가겠지요


스페이서가 3mm라 베드가 3mm 올라가면 문제는 해결될 것 같습니다. 





그나저나 케이블 베어를 미리 사다둔게 있는데 


조립하려고 찾아보니 어디에 처박아뒀는지 영 찾을수가 없네요...


728x90
728x90





부품을 체크하느라 스텝모터를 꺼냈습니다. 


몇번째 다시 말하는건지 모르겠지만 재고부품을 최대한 재활용중인데, 


그중 가장 오래된 물건인 것 같습니다. 20년도 더 전에 생산된 스텝모터입니다. 


그중 상태가 안 좋은 편이긴 하지만 알루미늄인데도 부식이 다 있을 정도입니다. 









이제서야 깨달았는데 20teeth 6mm bore 타이밍 풀리를 끼우려고 하니 안들어가더군요....;;








외경이 6.35mm 입니다. 사진은 6.37이지만 6.35mm 가 표준굵기입니다. 


이거 또 해외주문해야하나 하고 살짝 놀라서 찾아보니 다행히 3D 프린터 부품 취급업체 중 한곳에


6.35mm 내경 타이밍 풀리 재고가 있네요











Z 축 스텝모터는 거꾸로 장착 예정이라 원래 볼트를 빼고 


더 긴 볼트로 고정부에서 관통해 조립할 생각입니다. 










타오바오에서 구매한 연마봉 절단중입니다. 


자잘한 부품 구매할 때 같이 주문한거라 1M 짜리 봉 그대로 받았습니다. 


어차피 LM 가이드도 절단해야 하는지라 테스트겸 CNC에 물려서 잘라봤습니다. 









위에서 CNC에 물린 회전날은 요런 식으로 생긴 톱날 어댑터에 


그라인더용 절단석을 끼웠습니다. 










이렇게 그라인더용 톱날을 전동 드릴 같은 회전공구에 물려서


임시로 사용할 수 있게 해 주는 어댑터입니다. 


그라인더를 쓰는 것보다 위험하고 회전수도 모자라서 제대로 쓰기엔 부족하지만


임시로 잠깐씩 쓸때는 나쁘지 않습니다. 











회전을 높이면 진동이 심해질 뿐더러 토크도 회전수도 다소 부족한 편이라


천천히 자르느라 시간이 오래 걸리네요










처음 자르고 분리할 때 손 데이는 줄 알았습니다. 


두번째 자를땐 알콜을 뿌려주면서 조금씩 식혀줬습니다. 





익스트루더 가운데에 5T 알루미늄판이 들어가기 때문에 


방열판을 끼우면 볼트 길이가 모자라 조립이 안되네요. 


당장 더 긴 볼트는 없어서 임시로 방열판은 제거하고 조립해뒀습니다. 














슬슬 기존 델타도 분해처리하고 있습니다. 


저 부분은 위로 당겼더니 그냥 뚝 부러지네요. 


그냥 썼어도 어차피 오래 못 갔을듯 합니다. 




728x90
728x90


제 CNC에서 감당이 안되는 사이즈의 판재들은 어쩔 수 없이 외주를 맡겼습니다. 








Z축 베드를 5T를 사용했는데... 생각보다 너무 묵직해서 괜히 5T 썼나 싶은 마음이 듭니다. 


이제와서 변경할수도 없고 어차피 그냥 쓰긴 해야 하는데...


최악의 경우엔 CNC에 넣고 살을 깎아봐야겠습니다. 












프로파일의 결합은 부품을 사용하는 방식이 아니라 


프로파일에 구멍을 내서 직결하도록 설계했습니다. 


여러개의 카운터보어 구멍을 내야 하는데 


원점이 틀어지지 않도록 포맥스 쪼가리를 잘라 틀을 만드는 중입니다. 











총 18개의 카운터보어를 뚫었습니다. 













임시로 조립해봤습니다. 


프로파일 가로대를 5개 시켰는데 3개밖에 안왔네요.


주문서를 기술자에게 넘길 때 5를 흘려써서 3으로 보였다거나 하는게 아닐까 상상을 합니다. 


통화 후 다시 보내주기로 했으니 주말까진 거의 준비가 될 듯 합니다. 











조립하면서 손봐야 할 부분도 많지만 그래도 이제 설계와 가공은 거의 끝났습니다. 


조립하고 세팅하는데도 많은 시간이 걸리겠지만 


그래도 이제부턴 완성도가 눈에 보이기 시작하니 더 즐겁게 할 수 있을 것 같습니다. 

728x90
728x90


LED 바를 만들었습니다. 


LED를 가끔 쓸 때마다 전압 맞추기 애매했는데 이번에 아예 AMC7135 LED Driver 칩을 구매했습니다. 


Voltage Regulator 로 전에 사놓은 7805를 많이 사용했는데 


사실 7805는 전류가 스펙상 1~1.5A 까지지만 이 경우 발열이 엄청나고 실제로는 200mA 만 넘게 사용해도


열이 은근히 심해서 방열판이 필수로 들어가야 하기 때문에 회로의 크기가 커지는 문제가 있습니다. 


그래서 LM1117 시리즈 칩을 구매해서 써봤는데 크기도 작고 발열도 적고 해서 쓰기가 좋네요


LM1117 칩은 3.3V, 5V, Adjustable 등 서브모델이 여러개 있는데 가격도 싸니 종류별로 사 놓으면 유용합니다. 



 












12V 입력으로 LED는 4개씩 직렬입니다. 
















LED 간격을 잘못 맞추긴 했지만 잘 나오니 이대로 사용할 예정입니다. 













남는 시간에는 CNC로 알루미늄 부품을 하나하나 깎고 있습니다.


절삭유 공급기를 만들어 단 이후로는 알루미늄 3T 까지는 쉽게 깎을 수 있어 좋습니다. 


5T는 진동과 소음이 심하고 결과도 좋지 않은데 반면에 3T는 결과도 매우 좋게 나오고 잘 깎이네요.


물론 가공속도는 매우 낮게 줘야 하기 때문에 위의 부품 하나 깎는데 30분이 넘게 걸리기 때문에 


틈나는 대로 하나씩 하나씩 깎고 있습니다. 


프로파일은 결국 재활용 실패하고 새로 주문했는데 주말까지는 일단 필요한 부품이 완비될 것 같습니다. 



728x90
728x90


몇년전 이마트에서 구매한 의자입니다. 접이식이기도 하고


용접이나 재질도 좀 부실하게 생겼는데 얼마전 다리 용접부가 끊어지면서 부러져 버렸습니다. 










다이소를 갔더니 거의 같은 의자가 있습니다. 


다만 이 의자는 앉는 부분이 플라스틱이라 앉았을 때 엉덩이가 아프더군요. 













일단 부러진 의자의 다리를 떼어냈습니다. 










다이소 의자의 시트를 분리해서 이마트 의자에 조립합니다. 








엉덩이가 편한 의자 조립 완료. 




728x90
728x90



<시끄럽습니다. 볼륨에 주의>


지난번에 제작한 절삭유 컨트롤러를 이용해서 


3D 프린터에 들어갈 부품들을 가공하는 중입니다. 












아직 가공조건을 잘 맞추지 못했고


CNC가 소형이라 가공면이 좋질 못합니다. 


사진은 비교적 잘 나왔지만 사포로 어느정도는 마감해주지 않으면 안될 정도네요









그래도 오랫동안 알미늄 가공은 엄두를 못내고 있었는데 생각보단 잘 되는 것 같습니다. 










5T 판재가 너무 커서 CNC 베드에 들어가질 않아 잘라냅니다. 









직소로 잘라낼 때는 꼭 기름칠을 많이 하고 저속으로 천천히 잘라내야 하는데요









안 그러면 이렇게 톱니 사이에 알미늄이 녹아붙어서 톱날을 버리게 되기 때문입니다. 


커터칼로 한참 긁어서 간신히 재생시키고 나머지를 조심스럽게 잘라냈습니다. 









이 부품들은 측면가공이 들어가기 때문에 CNC에 개조작업을 했습니다. 











베드 앞면에 펀칭을 하고 










드릴로 뚫고.. 











탭 드릴을 낼 때는 사이즈 조견표를 보고 맞는 드릴을 골라야 합니다. 


M6 탭을 낼 거라서 5mm 드릴을 사용했습니다. 




 







이때도 wd-40을 계속 충분히 뿌려주면서 작업해야 합니다. 


그리고 탭이 뻑뻑하다 싶을 때는 꼭 역회전으로 빼내고 다시 천천히 들어가기 반복. <-중요.










측면 홀을 뚫기 위해 클램프를 장착한 모습입니다. 










원점을 잡고 드릴링을 합니다.  wd-40 필수. 


싸구려 벤치드릴 하나만 있어도 되는 일을 CNC로 하고 있네요











아까도 말했듯... 탭은 조심해야 합니다.


약간만 힘주면 저렇게 박힌채로 부러지는데


저 경우는 잡을곳이 있어서 천천히 펜치로 잡고 돌려빼면 되지만


튀어나온 곳도 없이 박힌채로 부러져 버리면 수습이 매우 힘들죠.















일단 판재 가공은 부품 하나만 빼고 전부 끝났습니다. 


X축 고정판은 알루미늄 판을 새로 주문해서 가공할 예정입니다. 

















3T는 그럭저럭 나오는데







5T는 무슨 톱질한것 마냥 면이 안좋습니다. 


가공조건을 여러번 바꿔가며 실험해 봤지만


그냥 CNC 구조 자체의 정밀도 및 강성 부족이 원인인 것으로 판단이 됩니다. 


가공중 소음도 엄청나서 귀를 막고 작업했네요










728x90
728x90


완성했습니다. 5월초 연휴 이후 늘어지는 마음이 강해서 손도 안대고 있었는데 하루이틀 집중하니 끝났네요


FET를 뒤집어 끼우는 실수가 있었고 


출력 타이밍을 아무리 짧게 잡아도 펌프의 토출량이 강한 것 같아 


모터 출력 핀을 2번 핀에서 pwm 출력이 가능한 5번 핀으로 옮기고 


analogWrite(pin,120) 정도를 써서 출력을 절반 가까이 줄였더니 적당합니다. 










전체 타이밍은 2초이고 가변저항의 움직임에 따라 


0.02초 단위로 ON 시간과 OFF 시간이 나눠집니다. 


처음 제작시에는 ON/OFF 타이밍을 delay를 썼더니 LCD가 그 시간동안 먹통이 되는 문제가 있어


millis() 명령을 이용해 프로그램이 실행된 시간과 


지나간 시간을 체크하여 비교하는 예제를 참조하여 수정했습니다. 





eagleCad와 아두이노 스케치 첨부합니다. 


 

CNC Coolant Coltroller.zip



728x90
728x90

현재 능력은 안되고 딱히 쓸데도 없지만;; 


통합 홈 제어 시스템이나 농장 관리 등 IOT 시스템에 관해 관심이 있다. 


아두이노나 ESP8266이냐 집안 공유기에 접근 가능하다지만 


먼 실외나 농장같은 경우 통신망 문제가 발생하는데







일단 3g 나 gprs 등 통신망으로 아두이노와 연결 가능한 모듈도 존재하고


USIM을 꽂아 쓸 수 있는데 당연하게 요금을 지불해야 한다. 


단순하게 '선불폰에 들어가는 USIM 쓰면 되지..' 라고 생각했는데







최근에 알고보니 선불폰에도 기본료가 있다(아니 대체 왜;;)


기본료 뿐 아니라 심지어 몇개월 이상 사용하지 않으면 USIM 등록이 해제된다고.. 









그러면 장기적으로 IOT를 대량으로 사용하는 사업자들은 어떻게 해결하나 싶었는데




IOT 요금제라는게 별도로 있다


월정액 단위인게 마음에 안들지만 그래도 그나마 나은 듯 하고..


왠만한 거리 내에서는 외장 안테나를 크게 달더라도 wifi 망을 사용하는게 나은 듯.




728x90
728x90


요즘은 전기로 벌레를 지져서 죽이는 방식의 벌레잡이등은 잘 쓰지 않는 편이죠


일단 전극 사이에 벌레 시체가 녹아붙는 경우가 많고


소리도 상당히 시끄러울 뿐더러 저가형 제품은 고장도 잘 나는 등의 단점이 있습니다. 




그래서 요즘은 다른 방식의 제품들이 나오고 있는데요





이렇게 벌레를 유인해서 팬으로 흡입해버리는 방식과












이렇게 유인해서 뒤쪽의 끈끈이 접착제로 잡아버리는 2가지 형태로 나오고 있습니다. 


위의 제품은 가정에서 많이 사용하는 것 같고


하단 제품은 관리 편의상 업소나 해충구제 업체 등에서 사용하는 것 같습니다. 





집에 안쓰는 자외선 LED를 보고 창고에 벌레잡이등이나 만들어 볼 생각이 들었습니다. 


하는 김에 있는 부품들로 최대한 해결하려고 합니다. 




약간 모양에 신경을 써봤습니다. 










하지만 절단하면서 망했네요. 


깔끔하지도 않고 2T 포맥스에 구멍을 많이 뚫었더니 


크기에 비해 구조적으로 너무 약합니다. 














그래도 새로만들만한 물건은 아니라 그냥 조립합니다. 









L자 형태의 앵글을 2개 제작했는데요










다이소에서 파는 파리 끈끈이 사이즈에 맞춘 상태입니다. 











원래는 이렇게 쓰도록 되어 있는 물건이죠












끈끈이도 가장자리에는 묻어 있지 않기 때문에 저렇게 넣고 뺄 수 있습니다. 












최대한 재활용을 목적으로 했습니다. 


왼쪽은 언젠가 프린터 버릴때 분해해 두었던 파워 서플라이 부분인데 


왼쪽은 12V 출력이라 5V가 나오는 오른쪽 부품을 사용하기로 했습니다. 





파워 서플라이는 5V 출력이지만 LED는 3.3V 정도에서 사용해야 하죠.


저항 같은걸로 대충 낮출수도 있겠지만 UV LED는 일단 비싼 부품이라;


LM2576을 이용해 DC-DC 다운 컨버터를 만들기로 했습니다. 







물론 3500원 정도면 해결되긴 합니다만;;;









갖고있던 중고부품을 사용합니다. LM2576-ADJ 부품을 사용해서 인터넷에서 회로도를 찾고


원하는 출력전압을 계산해서 저항을 산출합니다. 









3.3V를 노렸는데 3.4V 가 나오는군요..










LED 기판에도 전류제한칩이 붙어 있으니 괜찮을 것 같습니다. 












고정은 대충 케이블타이로 했는데 설계할때 너무 대충한 것 같습니다. 





<아래쪽에는 벌레 사진들이 있으니 벌레를 싫어하시는 분들은 주의하시기 바랍니다>











조립하고 걸어봤습니다. 












이틀이 지나 수확(?) 해 봤습니다. 


창고가 거의 실외나 다름없는 곳인데다 


화단과 정화조까지 근처에 있어서 벌레와 모기가 많습니다. 








얼마나 효과가 있는지 궁금해서 실험군과 대조군을 나눠봤습니다. 










하루가 지난 뒤의 비교입니다. 대략 3배 정도의 효과가 있는 듯 하고


UV LED를 비춘 쪽은 모기나 파리 등 기타 해충이 많이 걸리네요

728x90

'D.I.Y.' 카테고리의 다른 글

hcms-2912 alphanumeric displays.  (5) 2017.06.22
접이식 스툴 수리.  (0) 2017.05.26
Digispark ATTINY85 5번 핀 리셋문제.  (2) 2017.04.23
여름대비 벌레잡이등 제작  (0) 2017.04.14
CNC용 절삭유 펌프 컨트롤러.  (0) 2017.02.13
728x90


기구부는 거의 손대지 않고 전자부품들을 정리하고 있습니다. 












외부 스텝 드라이버(TB6560)을 쓸 예정입니다. 












추가로 Heat Bed ON/OFF 용 릴레이와 SMPS OFF용 SMPS 를 1개 보드에 몰아넣어서 제작했습니다. 










RAMPS 보드에서는 Heat Bed 와 연결된 전원부가 잘 나가기고 하고


보다 빠른 가열을 위해 24V Heat Bed를 쓴다던가 하는 경우가 있기 때문에 위와 같은 제품도 판매를 하더군요.


저는 항상 그렇듯 보유중인 오래된 부품들 처리용으로 제 전용 PCB를 만들었습니다. 













RAMPS 보드에서 위의 하늘색 화살표로 가리키는 부분에 선을 연결하면 


M80 / M81로 파워 서플라이를 제어 가능합니다. 








http://www.thingiverse.com/thing:619576



사실 릴레이만 있으면 바로 보드와 파워 연결해서 써도 됩니다. 


저는 히트베드용 릴레이도 있고 하다보니 부품 고정이 지저분해지는게 싫어서 


별도로 보드를 만들었습니다.  











RAMPS 보드에서 신호가 제대로 나오는지 확인해 봤습니다. 




728x90
728x90

일단 P5 핀을 아날로그 입력으로 꼭 써야만 하는 상황에서.




알고보니 아날로그 입력시에는 핀 번호가 다르네요. P5 = A0 라서 


analogread(0) 이 P5 핀의 아날로그 입력이라는군요








다만 analogWrite는 그냥 핀번호 그대로고요.




하여간 계속 리셋문제가 생겨서 다시 구글링을 했더니 


레딧에 저와 같은 분이 계시더군요





결론은 원래 정품 Digispark는 괜찮은데 클론버전은 퓨즈비트 설정이 안돼있어서 그런듯.





하여간 이걸 또 어떻게든 새 부트로더를 업로드해야 하는 상황입니다. 



Arduino as ISP를 사용해보려 했으나



안되는군요


알아보니 boards.txt에 Digispark 보드가 등록이 안되어 있어 그런것 같은데..


설명을 읽어봐도 무슨 말인지 잘 모르겠어서 직접 ISP로 hex 파일을 굽는게 낫겠다 싶었습니다. 




https://www.instructables.com/id/Digispark-DIY-The-smallest-USB-Arduino/


이 링크를 참조했습니다. 






ATMEL 홈페이지에 가서 Atmel Studio를 다운받았습니다.


그런데 소지중인 MKii ISP가 잡히지가 않네요.. 인식은 되는데 에러가 납니다. 


알아보니 윈도우 7 이상에서 드라이버 문제가 있다는 것 같은데 드라이버는 이상없이 잡혔는데 말이죠


더 알아보니 드라이버 버전이나 Atmel Studio에 따라 인식되는 펌웨어가 있고 안되는 경우가 있다는데


이제 슬슬 너무 지치기도 했고 그냥 알리익스프레스에서 USBASP 새로 주문하고 


만들던 보드는 아두이노 미니로 다시 원상복귀해서 완성하는걸로 결정지었습니다..



돌고돌아 제자리네요



728x90
728x90

직접 설계를 하며 델타에 없었던 편리한 기능들을 이것저것 넣고 있습니다. 





스텝 드라이버는 CNC에 쓰이고 남은 TB6560 드라이버입니다. 


기존에 쓰던 A4988은 편리하긴 하지만 2A 까지만 드라이빙이 가능하고


그나마도 최대출력 연속사용은 매우 불안합니다만


TB6560은 3A 드라이빙이 가능하고 아차하면 쇼트나는 A4988보다 안정성이 있습니다. 


사실 저소음의 TB6600을 쓰고싶긴 한데 최대한 소지중인 부품들 소모하는 걸 목적으로 했습니다. 








요건 접이식 스풀거치대고요. 가운데 튀어나온 두줄은 베어링입니다. 


대충 아무 스풀이나 걸기 쉽고 부드럽게 풀리도록. 









케이블 체인도 넣었습니다. 


프린터 2년 정도 열심히 쓰다보면 한 3~4번쯤은 케이블 끊어짐 문제가 있었던 것 같아요






추가로 LED 등도 넣을 생각이고요.




이런 생각들을 하다가 프린팅이 완료되면 


자동으로 전체 시스템을 셧오프 해주는 기능이 있으면 좋겠더라고요.




그래서 서칭을 해봤습니다. 



Attiny 칩을 이용해서 자동으로 스위치가 꺼지도록 한 사람이 있더군요







리밋 스위치를 만들고 출력후 베드를 끝까지 내려서 스위치가 일정시간 이상 눌러지면


SSR에 신호를 보내 전원을 off 하는 방식인 듯 합니다. 









찾아보니 오픈크리에이터 카페에도 같은 작업을 하신 분이 있었고요






이대로 하면 되겠거니 하다가도 왠지 뭔가 더 간단하게 될것만 같은 생각이 자꾸 들어서 


계속 찾아봤습니다. 







출처 : http://www.tridimake.com/2012/11/auto-shutoff-at-end-of-print.html


역시나 말린 펌웨어에서 자체적으로 지원하는군요


컴퓨터용 파워 서플라이를 쓰는 경우 


ATX의 녹색 선이랑 GND 신호를 연결하면 파워가 on되고 떼면 off 되죠.


그 신호를 줄 수 있는 명령어가 존재합니다. 


M80 은 A0 핀을 HIGH 로 올려주고

M81 은 A0 핀을 LOW 로 내려줍니다. 


3D 프린팅 프로그램에서 End Gcode 마지막에 M80 이나 M81을 넣어주면 되겠네요



하지만 저는 컴퓨터용이 아닌 일반 SMPS를 사용할 예정이므로


SSR 과 푸쉬 스위치 1개가 필요합니다. 



간단하게 개념을 스케치해봤습니다.


1. 일단 SSR에 병렬로 220V 푸쉬 스위치를 달고


2. 푸쉬 스위치를 누르면 일시적으로 220V 전원이 공급됩니다. 


3. 그러면 SMPS에서 DC 12V** 가 나오므로 SSR에 신호를 공급해 줄 수 있습니다. 


4. 푸쉬 스위치를 떼도 SSR은 계속 ON 상태여서 전원을 공급하게 됩니다. 


5. 프린팅이 완료되면 RAMPS 보드에서 LOW 신호를 줍니다. 


6. 일시적으로 SSR이 off 되면서 전원이 꺼집니다. 



**신호 레벨 때문에 5V 로 다운시켜야 할 것 같습니다. 



일단 간단하게 테스트를 한번 해 봐야 할것 같네요





푸쉬 스위치를 하나 사야하나 하고 쇼핑몰을 뒤지다가


문득 생각이 나서 부품박스에서 찾아냈습니다. 


10년도 전에 구했던 부품인데 얼마전에 테스트해보니 


내부에 귀여운 꼬마전구(6V) 가 들어있습니다만 시대에 맞춰 LED로 업그레이드해뒀던 물건입니다. 


여기에 쓰면 딱이겠네요







테스트를 위해 임시로 연결해봤습니다. 



동영상을 급하게 찍었는데 카메라 오류로 날아갔네요



생각했던 대로 잘 움직입니다. 


푸쉬 스위치 누르면 전원 켜지고 SSR에 전원이 공급되니 자체적으로 계속 켜져있다가


SSR 입력 끄면 SMPS가 꺼지네요



그냥 RAMPS 에 직결하긴 좀 불안하고 TR이나 FET 로 스위칭 회로 만들어서 연결하면 딱일 듯 합니다. 




연결과 펌웨어 설정은 

https://github.com/foosel/OctoPrint/wiki/Control-your-printer's-ATX-PSU-through-a-RAMPS-board-using-OctoPrint#atx-psu-to-ramps-14-wiring 


http://www.thingiverse.com/thing:619576

참조

728x90
728x90

여전히 CNC용 쿨런트 제어기 만들고 있습니다. 


동작은 간단하게 1개의 수동 on/off 스위치로 CNC 입력 모드와 메뉴얼 모드를 전환하고


수동조작시는 1개의 아날로그 입력으로 제어하도록 하고 있습니다


그런데 수동on/off 스위치를 입력하면 


자꾸 리셋되는 현상이 일어나 원인을 찾지 못해 한동안 고생했는데요






알고보니 그게 리셋핀입니다;;







리셋핀을 입력으로 지정해서 쓰는 바람에 입력신호가 GND로 떨어지면 리셋이 되던거였습니다. 


다른 핀과 바꾸고 테스트해보니 여전히 작동이 잘 안되는 부분이 있더군요.


순서대로 하나씩 테스트해보니 


i2c LCD 용으로 사용하는 0번,2번핀을 제외하고


1,3번핀은 입력 사용시 이상없음


4,5번핀은 입력 사용시 리셋됩니다. 


입력핀마다 풀업 저항을 연결해놓은 상태라 변수가 있을수도 있겠습니다.



하여간 현재는 일단 아날로그 입력을 5번 핀으로, 모터 출력을 4번으로 잡고


입력 두개를 1,3번 핀으로 할당했더니 괜찮아졌네요









생각보다 시간이 좀 걸리는군요


728x90
728x90



비싼돈주고 샀던 벌레잡이등이 UV라이트가 금방 나가버리더군요


사놓고 쓸일이 없던 UV 라이트와 다이소 파리끈끈이를 이용해 벌레잡이등을 만들어 보려고 합니다. 







다이소에서 구입한 파리 끈끈이입니다. 









원래는 이렇게 끼워서 사용하도록 되어 있는데


저 고정틀은 필요없고 끈끈이 부분만 사용할 예정입니다. 











끈끈이 사이즈에 맞춰 멋지게 설계를 했습니다. 











CNC에서 쓱싹쓱삭 잘라내고요












이렇게 들어갑니다. 


가장자리만 따로 종이를 붙여서 끈끈이가 닿지 않게 해야겠죠











구입해놓고 쓸일이 없었던 1W 자외선 LED입니다. 











300mA 정도 소비하네요. 


LED 보드에 전류제한 IC 가 들어있어 5V 에서도 작동은 합니다만 


전압을 올릴수록 발열이 심해집니다. 









어댑터를 쓰려다 각종 전자제품 버릴때 분해해 뒀던 파워 서플라이를 꺼냈습니다. 


그런데 대부분 12V~18V 출력이라 다운컨버터가 필요합니다. 











LM317이 쓰기는 편한데 이건 1A 제한이라


300mA LED 3개를 연결하기엔 불안합니다. 


LM2576을 꺼내봤습니다. LM2576-ADJ 를 쓰면 원하는 대로 전압을 낮출 수 있습니다. 











보신 분들도 있겠지만 이 흔한 스텝다운 컨버커가 LM2576이나 LM2596을 사용하는 모듈입니다. 










원래 하강전압을 계산하는 계산식이 저렇게 데이터쉬트에 있는데요















구글님의 도움을 얻어










요렇게 간단하게 결과를 얻습니다. 










비용을 들이지 않았으면 딱 좋았을테지만 인덕터랑 쇼트키 다이오드는 없어서 주문을 해야하네요






728x90
728x90

절삭유 컨트롤러를 일단 조립해놔야 알미늄 가공을 할 수 있으니


슬슬 가공테스트도 해 볼겸 해서 마무리를 급히 지었는데요





회로 마련하고


이제 그냥 스케치만 업로드해서 최종 테스트만 하면 되는 상황


그런에 이 Digispark 보드가 드라이버가 이상한건지 업로드가 되다말다.. 


최초 업로드는 정상으로 되고 두번째부터는 제대로 안되고 하는 현상이 자주 벌어집니다


아예 보드를 분리한채로 깨끗하게 연결해봐도 되는 경우보다 안되는 경우가 더 많네요.


그럴때 제어판 장치관리자를 보면 드라이버에 [?] 마크가 떠있어서 재설치해봐도 되다말다..


원인도 못찾겠고 며칠간 이걸로 골치아파서 어차피 Attiny85 칩 사용하는거니 


그냥 아두이노 부트로더 올려서 쓰면 되겠지 했습니다. 







hardware 폴더에 attiny.zip 파일만 압축풀어주면 된다고 해서 했는데










 


보드 리스트에 안뜨네요. 



지금 이걸 먼저 해결해야 할지 다시 아두이노 미니 보드를 쓸지 이것도 고민입니다. 

728x90
728x90


현재 상황입니다. 기구부의 디테일을 잡고 있습니다. 









간단한 설계할때는 볼트같은건 귀찮아서 잘 넣지 않지만


이렇게 제대로 설계할때는 전부 넣어주지 않으면 제작할 때 간섭이 생기기도 하니 신경써주는게 좋죠.











BOM 작성하면 어떤 부품이 얼마나 쓰이는지도 알 수 있어 더 좋고요












익스트루더랑 XY베이스 잡을 때 케이블 체인은 나중에 넣을 생각이었는데


너무 타이트하게 설계를 잡아서 공간이 살짝 모자라더군요


꼭 어딘가 전선이 끊어져 문제가 생기죠. 


결국 Y축방향 프로파일은 20mm 늘렸습니다. 


저게 없어도 당장 문제가 생기는건 아니지만 실제로 프린터를 몇년 써보면


미리미리 설계당시에 대비해주는게 좋습니다. 



사실 블로워팬 자리도 애매해서 지금 고민중입니다...

728x90
728x90


얼마라고??



728x90
728x90


이정도쯤 진행됐습니다. 










저런 브라켓들은 모두 CNC 가공 예정입니다. 











프로파일에도 CNC 가공으로 카운터보어를 넣고 볼트로 직접 결합할 생각이고요









LM가이드에 볼스크류를 쓰지만 전부 재활용입니다. 


볼스크류는 오륙년전에 CNC 만들겠다고 중고로 사놓은 것을 이번에 사용하려고 합니다. 

728x90
728x90



위와 같이 주문했습니다. 


12파이 연마봉 1미터

연마봉홀더 SK25 1개

연마봉홀더 SK12 2개

플렌지 리니어 베어링 12파이 2개

PLA 필라멘트 4개









몰테일 배송비는 7.5kg 기준으로 37.44$ 나왔고요











카드로 결재된 금액은 위와 같습니다. 타오바오 36,136\ / 몰테일 42,604\


합계 78,740\











국내 몰에서 같은 물건들을 찾아 가격을 계산해 봤습니다. 


배송료를 합치면 10만원이 넘겠네요


해외배송료만 없으면 반값도 안되는 가격인데 물품가보다 비싼 배송료 때문에 좀 아쉽습니다. 











물품은 나쁘지 않습니다. 어차피 국내유통제품도 다 중국산이니까요





다음에 또 구매할 기회가 생기면 몰테일 말고 저렴한 곳으로 한번 알아봐야 겠습니다. 


구매후 중국 배대지 가격비교글(링크)  을 찾아서 읽어보니 가격차이가 심하네요

728x90
728x90




아두이노로 대충 만들어놓은 기존것은 별도로 전원의 제어장치는 달지 않았습니다.


하지만 알루미늄을 가공하게 된다면 상당히 긴 시간동안 가공을 해야 하고


가공을 한 이후에 바로 달려가서 끄지 않으면 절삭유가 계속 공급된다는 문제가 있죠







 



CNC 컨트롤러에서 제어 신호를 넘기면 on/off 가 가능합니다.


기존 보드에는 이 신호를 생각하지 않고 만들었기 때문에


어차피 보드도 프로그래밍도 새로 해야하는 상황이라 얼마전에 사두었던 Attiny85 보드를 사용해볼까 합니다. 


계산해보니 핀을 다 쓰면 아슬하게 사용이 가능할 것 같더군요.










일단 LCD만 예제로 테스트해봤는데


기존의 I2C 라이브러리(LiquidCrystal_I2C.h)는 사용이 불가능하고 


digispark에서 변경한 LiquidCrystal_I2C.h 를 써야합니다. 


그런데 파일명이 같다보니 라이브러리 폴더에서 기존 라이브러리를 자꾸 참조하는 바람에 


계속 에러를 뿜었는데 일단 기존 라이브러리를 아예 지우고 덮어씌워서 해결봤습니다. 



나중에 다시 문제가 되는게 아닌가 싶은데 그때는 도로 바꿔야겠죠

728x90

'Completed > 3D Printer - CoreXY' 카테고리의 다른 글

ATTINY85 Digispark 보드 트러블 - 해결.  (2) 2017.04.19
가공준비중 아두이노에서 생긴 트러블.  (0) 2017.04.11
0406 CoreXY 설계 진행상황  (0) 2017.04.06
설계 진행상황  (0) 2017.03.31
CoreXY 설계중.  (0) 2017.03.29
728x90

슬슬 델타 세팅하고 수리해가면서 쓰는것도 피곤하고 


좁은 출력영역때문에 중대형 이상 프린트시엔 문제도 많고 해서 


CoreXY 아이디어 스케치를 해봤습니다. 



그런데 일단 갖고있는 부품으로 견적을 내보다 보니


일부 부품들은 갖고 있고 델타에서 유용할 수 있는 부품들도 있고 해서


거의 무비용으로 제작이 가능하다는 예상이 나와 문득 욕심이 나더군요



처음에 만들던 모습인데 델타에 쓰인 LM가이드가 400mm 짜리라


전체 크기가 각변 500mm가 넘습니다. 


출력영역이 큰것도 좋지만 저정도 대형을 출력할 일은 거의 없고


덩치가 커서 걸리적거리는 부분은 계속 영향을 끼칠 것이라 생각하니 안되겠더군요







LM가이드를 100mm 정도 잘라서 맞춰본 모습입니다. 


20mm 알루미늄 프로파일과 알루미늄 판재 등은 


모두 갖고있는 재료를 CNC 가공하여 조립할 예정입니다. 



소형 CNC인지라 알루미늄 가공이 쉽지 않지만 


0.3mm 정도씩 야금야금 깎아나가면;; 어느정도 괜찮게 가공이 되더군요.



절삭유가 꼭 필요한지라 저번에 만든 절삭유 펌프 컨트롤러(링크) 를 붙여야 하고


가공시간이 오래 걸릴 일이라 스핀들 모터와 절삭유 펌프를 둘다 G 코드로 on/off 할 수 있게


업그레이드를 해야 할 것 같고요. 


그야말로 하나하나 깎아만드는 프린터가 되겠습니다.


설계도 설계지만 부품 가공까지 하면 꽤 오랜 프로젝트가 될 것 같습니다. 


728x90
728x90

필라멘트를 사려다가, 타오바오에서 리니어 베어링도 살 겸 해서 


한번 PLA 필라멘트를 같이 구매해 봤습니다. 


현재 국내에서는 PLA 1.75mm 필라멘트 1kg가 대략 1.7만에서 2만 사이에 판매를 하고 있죠.


배송료를 감안하면 네다섯개씩 산다해도 1.8~2만 정도 가격대를 형성하게 되네요







타오바오에서는 약 40위안부터 시작해서 50위안 정도에 판매를 하고 있더군요.






현재 환율로는 6500원에서 8200원 정도 합니다. 


이렇게 싸지만 문제는 배송료죠.




무게단위로 파는 물건이라 송료 계산도 어렵진 않은데 몰테일 기준으로


해상운송 기준 1kg 에 13$ 가 붙고


무게가 증가될수록 할인되어 4kg 구매하면 24$ 가 붙습니다. 


4kg 구매했으니 구매가+배송비 하면 대략 53000원 정도가 될 것 같은데


그러면 PLA 1kg 당 13,250\ 꼴이 되겠네요


대량구매하면 배송료 할인폭이 커지므로 7kg 이상 구매하면 12000원대까지 떨어집니다




1kg 만 구매할거라면 그냥 국내에서 사는게 낫고


4~5kg 이상 구매한다면 타오바오 직구가 가격이 좀 더 저렴합니다. 



728x90
728x90


자잘한 아두이노 프로젝트를 몇개 하다보니 아두이노 보드가 몇개 안남았습니다. 


아두이노 우노 보드보다는 크기가 작은 아두이노 나노를 선호하는데


스위치로 모터 한두개씩 조절하는 경우도 있다보니 아두이노 나노도 좀 오버스펙인 것 같아


digispark 에서 만들고 중국에서 복제한 attiny85 아두이노 호환보드를 구매했습니다. 


10개에 12.8$ 라는 엄청난 가격입니다. 







드라이버는 자동으로 설치되지 않아 위의 동영상을 참조했습니다. 


정리하면



1.아두이노의 환경설정에서 [추가적인 보드 매니저 URLs] 에

http://digistump.com/package_digistump_index.json 를 입력하고 확인.









2.[툴]-[보드]-[보드 매니저] 선택 후

digistump AVR Board 클릭하여 설치.






3.https://github.com/digistump/digistumparduino/releases 에서 드라이버 다운로드 후 설치





4. 이후로 Digispark 보드를 선택할 수 있습니다







업로드 방식이 좀 특이한데


일단 보드를 [USB 포트에서 제거] 한 후


아두이노의 업로드 버튼을 누릅니다. 




그러면 위와 같이 디지스파크 업로더를 실행하고 60 초 이내에 보드를 꽂으라고 나오고요








그 이후 보드를 꽂으면 업로드가 됩니다. 


보드가 꽂혀있는 상태로는 업로드가 안됩니다. 






작지만 실속있는 보드로 사용 용도가 많을 것 같습니다. 



728x90

+ Recent posts